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ABSTRACT

BORGES, L. Dynamics of matter waves undergoing Bloch oscillations in a
ring cavity. 2021. 68p. Dissertation (Master in Science) - Instituto de Física de São
Carlos, Universidade de São Paulo, São Carlos, 2021.

The work developed in this thesis investigate the dynamics of ultracold atoms trapped in
a ring cavity and undergoing Bloch oscillations due to the influence of a one-dimensional
vertical optical lattice and of the gravitational force. In this configuration, the atoms
collectively scatter light from the pump into the copropagating cavity mode, which then
leads to a self-consistent grating of the matter: this mechanism was coined collective atomic
recoil lasing (CARL). Such interaction between atomic motion and cavity modes provides a
possible continuous and non-destructive method to monitor the Bloch oscillations dynamics,
which could be implemented in atomic gravimeters. This dissertation investigates the
fundamental problem of dissipation effects due to spontaneous emission of the atoms,
which is responsible for a suppression of the Bloch oscillations signatures on the light
modes. We also study a possible solution for this issue by including a third atomic level in
the configuration to explore a probable dissipation reduction due to the phenomenon of
electromagnetically induced transparency (EIT).

Keywords: Bloch oscillations. CARL. EIT. Gravimetry. Three-level atom.





RESUMO

BORGES, L. Dinâmica de ondas de matéria realizando oscilações de Bloch em
uma cavidade anelar. 2021. 68p. Dissertação (Mestre em Ciências) - Instituto de Física
de São Carlos, Universidade de São Paulo, São Carlos, 2021.

O trabalho desenvolvido nesta tese investiga a dinâmica de átomos ultra-frios aprisionados
em uma cavidade anular e submetidos a oscilações de Bloch devido à influência de uma
rede ótica vertical unidimensional e da força gravitacional. Nesta configuração, os átomos
dispersam coletivamente a luz de pump para o modo copropagante da cavidade, o que
então leva a uma organização autoconsistente da matéria: este mecanismo foi cunhado de
recoil lasing atômico coletivo (CARL). Tal interação entre os modos de movimento atômico
e cavidade proporciona um possível método contínuo e não destrutivo para monitorar a
dinâmica das oscilações de Bloch, que poderia ser implementado em gravimetria atômica.
Esta dissertação investiga o problema fundamental dos efeitos de dissipação devido à
emissão espontânea dos átomos, que é responsável pela supressão das assinaturas das
oscilações de Bloch nos modos de luz. Também estudamos uma possível solução para esta
questão, incluindo um terceiro nível atômico na configuração para explorar uma provável
redução da dissipação devido ao fenômeno da transparência induzida eletromagneticamente
(EIT).

Palavras-chave: Oscilações de Bloch. CARL. EIT. Gravimetria. Átomos de três níveis.
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1 INTRODUCTION

The measurement of the gravitational field is an important objective in the fields
of geophysics, metrology, and many others as it provides informations of the planet’s
morphology and on the composition of the underground. In particular, a precise measure
of the local gravity acceleration can have a strong impact on oil exploration, considering it
could completely replace invasive methods, which are very costly. Since the last century,
gravimetry has evolved from pendulums, springs, torsion balances and superconducting
levitation instruments1 until recently, to cold atom interferometry.2 The latter takes
advantage of an oscillatory phenomenon known as the atomic Bloch oscillations.

The phenomenon of Bloch oscillations was predicted theoretically by Felix Bloch in
19293 in a study of electrons in a periodic crystal potential, where it had been demonstrated
that the application of a constant force on the confined electrons produces an oscillatory
behavior instead of a uniform movement. Back in the 90’s, the same phenomenon was
demonstrated in cold atoms trapped in optical lattices when an external force was applied,4

thus the name atomic Bloch oscillations.

The oscillations of the matter-waves due to the conservative potential provide a
direct signature of the force, hence the potential for gravimetry. This was recently shown
by the first measurements of gravity by that means,2,5–7 reaching precisions of 10−7. This
makes Bloch oscillations a useful tool with a wide range of applications, e.g., oil prospection
and metrology. However, experiments up to date have the disadvantage of relying on
destructive measurements of the instantaneous velocity of the atoms, such as absorption
imaging, which shatters the atomic cloud so a new ensemble is required to continue the
oscillations measure. Consequently, thousands of realizations must be performed in order
to produce a precise measurement of the force field, which in turn is spoiled by fluctuations
in the cloud preparation, and requires more time for the integration.

To tackle the problem of destructive measurements, one possible solution is to
combine the collective atomic effect of CARL (collective atomic recoil lasing), together with
the Bloch oscillations, using the particularities of a ring cavity, as proposed by the project
collaborators.8–10 As the counterpropagating modes of the ring cavity have independent
photon numbers, it allows a continuous harness of the light pulses resulting from the Bloch
oscillations. This continuous measurement depends on a single realization, eliminating
problems of fluctuations between realizations and drastically reducing the integration
time. Consequently, the construction of an experiment to provide the first non-destructive
measurement of Bloch oscillations by cold atoms was initiated in São Carlos, Brazil, with
the support of the São Paulo Research Foundation (FAPESP), the Brazilian National
Council for Scientific and Technological Development (CNPq) and the Coordination for
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the Improvement of Higher Education Personnel (CAPES).

This project aims to continue the theoretical investigations of the continuous
monitoring of Bloch oscillations in vertical ring cavities. Although a proof of principle has
recently been proposed,8 there are still caveats regarding dissipative effects, whose effect
on the synchronization of oscillations has not been studied. The research of this thesis
arises from the idea of including an additional atomic level in the used model of a two-level
atom, to make use of the EIT (electromagnetic induced transparency) effect: this allows
one to tune the optical characteristics of the atomic ensemble and reduce dissipative forces
that arise from the light-matter interaction.

In the following sections, we present a brief review of the Bloch oscillations and
CARL phenomena.

1.1 Bloch Oscillations

As mentioned earlier, Bloch oscillations were predicted since the first half of last
century, but their observation in electrons is very challenging, mostly because of the
scattering events by the lattice defects or impurities in natural crystals. On the other hand,
in optical systems the relative absence of defects in optical lattice provides an excellent
platform to observe such phenomenon.

To observe the Bloch oscillations with an atomic matter wave, we can consider
two counterpropagating laser fields modes of equal intensity, with wave-number k, which
produce a one-dimensional stationary wave (the optical lattice). The dynamics occurs in
the presence of an homogeneous and constant force, which in our case is the gravitational
force. We can write the Schroedinger equation to describe the time evolution of a single
atom wave-function in the presence of the force and of an optical lattice:

ih̄
∂

∂t
ψ(x, t) = (H− V̂g(x))ψ(x, t), (1.1.1)

where we have defined the gravitational potential V̂g = mgx̂, and the one-dimensional
Hamiltonian H composed of the atom kinetic energy and the optical lattice potential:

H = p̂2

2m + Vo cos2(kẑ), (1.1.2)

with the atomic mass m, the gravitational acceleration g and Vo the optical lattice strength.
From the Bloch oscillations theory11,12 we define the eigenfunctions ϕn,q(x) of H as

ϕn,q(x) = eiqxUn,q(x), (1.1.3)

which depends on the position x, the band index n and the quasimomentum q, restricted
to the first Brillouin zone: −k ≤ q ≤ k. The periodic function Un,q(x) = Un,q(x+ π/k) has
the same periodicity as the optical lattice and satisfy the Schroedinger equation[

(p̂+ h̄q)2

2m + Vo cos2(kẑ)
]
Un,q(x) = εn,qUn,q(x), (1.1.4)
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where εn,q are the eigenvalues of H, and periodic functions of the quasimomentum q with
period 2k. The action of the external force F = mg on the system dynamics is incorporated
in the wavefunction by performing a transformation of ψ to the accelerated frame:

ψ(x, t) = eiFxt/h̄ψ̃(x, t), (1.1.5)

then, equation (1.1.1) becomes

ih̄
∂

∂t
ψ̃(x, t) =

[
(p̂+ Ft)2

2m + Vo cos2(kẑ)
]
ψ̃(x, t). (1.1.6)

Comparing equation (1.1.6) to (1.1.4), we observe that the quasimomentum evolves in the
presence of the applied external force F according to

q(t) = q(0) + Ft

h̄
. (1.1.7)

The phenomenon of Bloch oscillations can be understood in terms of the quasimomentum
q illustrated in the reduced-zone scheme of Fig. 1. When q(t) reaches the edge of the
Brillouin zone at π/d = k, it is reflected to the point q = −π/d, which corresponds to
an oscillatory behavior in momentum space. After one Bloch period (τB = hF/d), the
quasimomentum fully spans the first Brillouin zone and returns to the same starting value
of q(0). Since the external force induces a uniform motion in quasimomentum space, the
wave function ψ̃ is also periodic in time with period τB, which corresponds to oscillations
in real space. In the case of the gravitational force, given by Fg = mgx, where g is the
gravity acceleration, the Bloch oscillations frequency is νB = mg/2h̄k.

t

q

π/d

−π/d

τB 2τB

Figure 1 – Time-dependent quasimomentum q(t) in the first Brillouin zone π/d ≤ q ≤ π/d.
Source: Adapted from SAMOYLOVA.10

In Fig. 2 we present the results of a recent experimental observation of Bloch
oscillations of weakly-interacting bosonic Strontium atoms in a vertical optical lattice
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under the action of the gravitational potential.5 Each image shows a different realization of
the experiment, since the time-of-flight method to measure the atoms momentum destroys
the cloud, and a new ensemble had to be prepared to continue the experiment.

3.2 ms2.4 ms 4.0 ms 4.8 ms

Figure 2 – Time-of-flight images of the atoms recorded for different times of evolution
in the optical lattice potential. In the upper part of each frame, the atoms
confined in the optical lattice perform Bloch oscillations for the combined effect
of the periodic and gravitational potential. In the lower part, untrapped atoms
fall down freely under the effect of gravity.

Source: Adapted from FERRARI.5

1.2 Collective Atomic Recoil Lasing

The collective atomic recoil laser (CARL) consists of the coherent amplification
of the scattered light from an atomic cloud interacting with a counterpropagating laser
beam. It was first predicted13 as an atomic analogue of the free-electron laser (FEL), since
it converts atomic momentum into coherent radiation.

The concept involves a monochromatic homogeneous beam of two-level atoms
moving at the same velocity and a strong counterpropagating pump laser beam, which
is Bragg-scattered by the atomic density defects. The interference between pump and
scattered light then produces an optical potential, which in turns increases the density
grating in a self-amplifying mechanism. Therefore, the CARL converts kinetic energy into
coherent radiation, increasing the energy difference between probe and pump mediated by
atomic bunching. The collective action of the atoms is depicted in Fig. 3.

The feedback of a single atom on the phase of the standing light wave is very weak,
thus it is necessary to have many atoms moving collectively, and the phase of the standing
wave needs to be not fixed. To satisfy these conditions, a ring cavity can be used, since
the phase of the standing wave is not fixed by boundary conditions of the mirror surfaces;
this is the motive why the first experimental realization of CARL used a ring cavity.15

Furthermore, the counterpropagating fields in a ring cavity form separate modes carrying
independent numbers of photons, which allows to measure independently their photon
population. In addition the atoms self-arrange as they are trapped by the dipolar forces in
the antinodes of the stationary wave, which then allows for the observation of the atomic
movement backaction using the phase of the standing wave.

Considering that the pump mode intensity |αp|2 is constant into the cavity, we aim
at monitoring the evolution of the probe mode α, where |αp|2 is the photon number. The
coupling between the modes only happens in the presence of atoms due to backscattering
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Pump

Time

Probe

Figure 3 – The atom on the left is initially placed on the slope of the stationary wave.
When accelerated towards the bottom of the potential, it pushes the wave to
the right, so that the atom initially positioned in the valley of the potential is
then granted potential energy and begins to oscillate.

Source: Adapted from COURTEILLE.14

events and is given by the single-photon light shift Uo = Ωp/∆, given by the rate between
the single-photon Rabi frequency and the detuning from the atomic resonance, respectively.
We can write the mode rate equation for α as15

α̇ = −κα + iNUoαp
∑
j

e2ikxj , (1.2.1)

where κ is the cavity decay, which describes the photon loss through the cavity mirror, k
is the light modes wavenumber, xj is the j-th atom position and N the number of atoms.
The second term in the above expression is the photon gain of the probe from the pump
mode through backscattering. The atom at position xj feels the classical potential of the
stationary light wave as the dipolar force, then the dynamics of the atom through the
scattering process is given by this force in the far detuned regime15

mẍj = −2ih̄kUo(αpα∗eikxj − α∗pαe−ikxj ). (1.2.2)

1.3 Proposed set-up

The setup investigated in this thesis consists of a cloud of ultracold atoms confined
in a vertical optical standing wave, as depicted in Fig. 4, where it is possible to combine
both effects of Bloch oscillations and the CARL. The optical lattice, with the lattice
constant π/kl, is generated by two external laser beams detuned sufficiently far from the
atomic resonance and intersecting at the location of the atoms under the angle β defined
by K sin(β/2) = kl, where K is the wavenumber of the laser beams.10 This externally
imposed optical lattice traps the atoms in a one-dimensional potential h̄Wo sin(2kz) along
the ẑ axis, where the potential depth is denoted by h̄Wo. In addition, the atoms are also
exposed to the gravitational potential mogz, where mo is the atomic mass and g is the
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gravitational acceleration. As a result, the atoms undergo Bloch oscillations with frequency
νb = mg/2h̄k4 under the influence of the applied gravitational force.

α+

α− La
tti
ce
bea

ms

ẑ
g

HR

HR

OC

K

β

k

Figure 4 – Scheme of a ring cavity consisting of two high-reflecting mirrors (HR) and one
output coupler (OC) interacting with an ultra-cold atoms cloud stored in one
arm of the ring cavity. The cavity modes are the pump and probe modes (α+
and α− respectively). Two lasers (K) crossing the cavity mode at the location
of the cloud under angles β/2 generate an optical lattice whose periodicity is
commensurate with the standing wave created by the pump and probe modes.
The atoms are also subject to an external accelerating force mog.

Source: Adapted from SAMOYLOVA.10

In Chapter 2, we derive the Bloch equations for a multi-level atom system, using
the master equation approach since we are interested in describing the dissipation effects of
spontaneous emission in our system. The general equations are used in following Chapters
3 and 4, where they are adapted to the two- and three-level atoms, respectively. We also
perform an analysis of the stationary solutions, optical forces and the light field dynamics
for those systems.

We describe the EIT effect using the three-level atom equations in chapter 5. Then
we show the impact of the third level on the optical forces and the radiative pressure force
reduction that can be generated.

The Bloch oscillations in both two- and three-level atoms are derived in Chapter 6,
where we use a momentum expansion for the atomic wave-function. First we reproduce
results for the 2LA adiabatic elimination case, studied in previous works. Then, we derive
the von Neumann equation for the three-level system to observe the dissipations effects
and the third level impact on the Bloch oscillations.
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To obtain the equations that describe the CARL dynamics, we must first derive
the equations for the internal degrees of freedom of the atoms. To solve this problem, we
could use the Schroedinger equation and describe the temporal evolution of the state of
the system. However, within this formalism, we cannot describe the dissipative process of
spontaneous emission as the atom is led to an overlap of many states of momentum and
has to be described by a distribution of wave functions.

To calculate the probability of finding the system within this distribution, we
use the formalism of the density matrix operators that describes a statistical mixture of
quantum states. The equations that describe the temporal evolution of the elements of
the density matrix of an atom in a field are the optical Bloch equations16 (not related to
the Bloch oscillations, although named after the same person). The following derivation
aims to introduce the notation and terminology used throughout this thesis and establish
the dynamical equations for the next chapters.

2.1 Density matrix

Let us consider some atoms trapped in an optical cavity. We call Ψ the atomic
wave-function, whose discrete states of quantized degrees of freedom can be described by
those eigenfunctions ψj of the unperturbed Hamiltonian operator Ho. The Hamiltonian
eigenvalues define the set of energy levels Ej given by h̄ωj related by

Ho |ψj〉 = h̄ωj |ψj〉 , (2.1.1)

〈r|ψj〉 = ψj(r), (2.1.2)

where j ∈ N. The eigenstates ψj form a complete orthonormal basis
∫
ψ∗jψkd~r = δjk, (2.1.3)

with δjk being the Dirac delta function. The atomic wave-function Ψ(r, t) satisfies the
Schrödinger equation

ih̄
∂Ψ
∂t

= HΨ, (2.1.4)

where H is the system Hamiltonian, composed of the Hamiltonians of the unperturbed
atom (Ho), the light field (Hfield) and the interaction between them (Hint):

H = Ho +Hfield +Hint. (2.1.5)
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The unperturbed, or atomic Hamiltonian can be written as the sum of the kinetic
energy and the Nl atomic levels |ψj〉 energies

Ho = − h̄2

2mo

∇2 +
Nl∑
j=1

h̄ωj |ψj〉〈ψj| , (2.1.6)

where mo is the atomic mass.

The atoms are driven by a near-resonance monochromatic laser, with frequency
slightly detuned from the atomic resonance, which allows the particles to absorb the
incoming photons and transition between energy levels. We consider an electric field due to
a monochromatic electromagnetic wave17 which, at the atomic position r, can be written
as

Ê(r, t) = 1
2
(
Ê+(r, t) + Ê−(r, t)

)
, (2.1.7)

Ê+(r, t) = E âei(k·r−ω̃t)ê = Ê−(r, t)†. (2.1.8)

â is the annihilation operator of the field mode, k is the field wave-vector and ω̃ its
frequency with E = i

(
h̄ω̃

2ε0V

)1/2
, where V is the cavity volume. The Hamiltonian for this

light field is given by
Hfield = h̄ω̃â†â. (2.1.9)

We can solve equation (2.1.4) by the expansion of Ψ in the orthonormal basis of
the Nl unperturbed atomic states |ψj〉

|Ψ(r, t)〉 =
Nl∑
j=1

cj(t) |ψj(r)〉 , (2.1.10)

〈ψj(r)|ψj(r)〉 = δjk, (2.1.11)

where cj are the complex amplitudes. For the free-atom case, where H = Ho, we can see
that its time dependence is given by

cj(t) = cj(0)e−iωjt. (2.1.12)

Considering that the eigenstates in (2.1.2) form a orthonormal basis we can define the
density matrix ρ

ρ̂ = |Ψ〉〈Ψ| , (2.1.13)

whose elements are given by
ρ̂ =

∑
j,k

c∗jckρ̂jk. (2.1.14)

We have here introduced

ρ̂jk = |ψj〉〈ψk| , (2.1.15)

ρjk = c∗jck, ρ∗jk = ρkj, (2.1.16)

with diagonal elements corresponding to energy levels occupations, populations, and
off-diagonal elements being related to the coherences between different levels.
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2.2 Dipole approximation

In the presence of the light field the electron cloud of the atom is distorted in
the direction of the electric field, inducing an effective electric dipole in the system. The
induced dipole oscillates and radiates electromagnetic waves as a classical oscillating dipole
would, therefore modifying the electric field.18 To derive the interaction Hamiltonian for
the Bloch equations we begin by calculating the polarization vector, which is obtained
from the sum of the dipole moments of each atom in the system

P =
∑
i

d̂iδ(r− ri). (2.2.1)

We have here defined the induced-dipole moment operator d̂i of the i-th atom as

d̂i = −er̂, (2.2.2)〈
d̂i
〉

= −e 〈Ψi| r̂ |Ψi〉 , (2.2.3)

where e is the electron charge. Performing the wave-functions expansion (2.1.10) in the
unperturbed states we get

〈
d̂
〉

= −e
∑
j,k

ρkjpjk, (2.2.4)

with the definition of the time-independent dipole matrix elements:

pjk = −e 〈ψj| r̂ |ψk〉 , p∗jk = pkj. (2.2.5)

In the presence of the external field the momentum part of the unperturbed Hamiltonian
is modified into

h̄2∇2

2mo

→ 1
2mo

[−ih̄∇+ eA(r, t)]2 − eΦ(r, t), (2.2.6)

where A(r, t) and Φ(r, t) are respectively the vector and scalar potentials of the external
field and p̂ is the momentum operator in the atomic Hamiltonian (2.1.6). In the Coloumb
gauge the vector potential satisfies the wave function

∇2A− 1
c2
∂2A
∂t2

= 0, (2.2.7)

with solution A = A0e
ikr−iωkt − c.c., where k = 2π/λ is the field wave-vector and λ its

wavelength. Considering r comparable with typical atomic dimensions (∼ Å), and optical
wavelengths (400− 700nm), one has kr � 1; hence over the extent of an atom the vector
potential can be considered spatially uniform A(r, t) ' A(t), which is referred as the
“dipole approximation”. In this gauge, and after a unitary transformation, equation (2.2.6)
becomes

1
2mo

[−ih̄∇+ e(A +∇χ)]2 − e∂χ
∂t
. (2.2.8)
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Choosing the gauge function χ(r, t) = −A · r, we obtain the following relations

∇χ = −A, (2.2.9)
∂χ

∂t
= −r · ∂A

∂t
= −r · E. (2.2.10)

Considering the Hamiltonian in equation (2.1.5) we can identify the interaction
Hamiltonian in the above equations as

Hint = −d̂ · E. (2.2.11)

Although the interaction between atom and light in the dipole approximation considers
a locally constant electric field, it is valid only over the atom size, and it changes with
its position relative to the light field wave. Thus, since our system relies on momentum
exchange between matter and light, it is still necessary to consider the spatial variation of
Ê through e±ikr in equation (2.1.8), which describes the atom momentum recoil due to an
photon absorption/emission.

2.3 Rotating wave approximation

Considering the atomic dipole moment in the direction of the electric field, the
atom-field interaction Hamiltonian becomes

Hint = 1
2

Nl∑
j,l

(ρ̂ljp̂jl + ρ̂jlp̂lj)
(
Ê+(r)e−iω̃t + Ê−(r)eiω̃t

)
. (2.3.1)

In the unperturbed case the density matrix elements ρjl evolves according to
ρjl(t) = ρjl(0)e−iωjlt, where ωjl = ωj − ωl, thus the products ρjlÊ+e−iω̃t and ρljÊ−eiω̃t

rotate much faster than the optical frequency, for a positive ωjl. Hence we can neglect
such terms performing the denominated rotating wave approximation (RWA).19 One can
also argue that these terms do not conserve energy (in first-order processes) since they can
be interpreted as the absorption of a photon combined with the de-excitation of the atom,
or with the emission of a photon combined with the excitation of the atom, respectively.
Anyhow, the interaction Hamiltonian can then be approximated as

HRWA
int = h̄

2

Nl∑
j>l

(Ωjlρjl + h.c.), (2.3.2)

with the Rabi frequency defined as

Ωjl = plj · Ê+(r)
h̄

. (2.3.3)
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2.4 Master equation

Let us now derive the dynamical equations for the density matrix elements consid-
ering the effect of spontaneous emission using the master equation formalism through the
von Neumann equation for ρ̂:

˙̂ρ = i

h̄
[ρ̂,H] + Ldρ̂. (2.4.1)

H is the total Hamiltonian (2.1.5) after the RWA, and Ldρ̂ is the dissipative term,
denominated the Lindblad superoperator20:

Ldρ̂ =
∑
j,k

γjk(2ρ̂kj ρ̂ρ̂jk − ρ̂jkρ̂kj ρ̂− ρ̂ρ̂jkρ̂kj), (2.4.2)

with γjk = Γjk/2 the linewidth of the atomic levels transition of |ψj〉 to |ψk〉.

The density matrix elements derivatives can be derived as

ρ̇jk = i

h̄
〈j| [ρ̂,H] |k〉+ 〈j| Ldρ̂ |k〉 , (2.4.3)

which leads to the following expression for the coherent part:

i

h̄
〈j| [ρ̂,H] |k〉 = −iωjkρjk −

i

2

Nl∑
l>m

(Ωlmρmkδlj + Ω∗lmρlkδmj − Ωlmρjlδmk − Ω∗lmρjmδlk),

(2.4.4)
where ωjk = ωj − ωk. For the dissipative part we have

〈j| Ldρ̂ |k〉 =
∑
l

2γklδjkρll −
∑
l

(γlj + γlk)ρjk. (2.4.5)

Gathering the expressions above, we obtain the optical Bloch equations with the
spontaneous emission, which describes the time evolution of the density matrix elements
for a Nl-level atom system:

dρjk
dt = 2

Nl∑
l

γklρllδjk −

 Nl∑
l

(γlj + γlk) + iωjk

ρjk
+ i

2

Nl∑
l>m

(Ωlmρmkδlj + Ω∗lmρlkδmj − Ωlmρjlδmk − Ω∗lmρjmδlk). (2.4.6)
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In this chapter we apply the definitions and equations made so far to the simple
case of two-level atoms (2LA) excited by counterpropagating light fields. In this specific
case we consider the derived Bloch equations in chapter 2 setting Nl = 2.

3.1 Bloch equations for two-level systems

We here consider a single atom with only two accessible energy levels denominated
|1〉 and |2〉, respectively the non-degenerate ground and excited state. The electric field
of the incident light field with two counter-propagating modes is given in the Heisenberg
picture by

Ê(z, t) = Re
{
E
(
â+e

ikz + â−e
−ikz

)
e−iω̃t

}
ê, (3.1.1)

with

E = i

(
h̄ω̃

2ε0V

)1/2

. (3.1.2)

â± are the annihilation operators of the field modes, which satisfy the commutation
relations

[
â†±, â±

]
= 1 and [â±, â∓] = 0, k is the wave-vector of the modes and ω̃ their

frequency. The field polarization is set in the same direction ê of the atomic dipole.

α+ α−

Figure 5 – Diagram of a atom (atomic cloud) excited by two counterpropagating light
modes in a ring cavity.

Source: By the author.

With the electric field definition, the Hamiltonian in the rotating wave approxima-
tion for the 2LA writes

H = − h̄2

2mo

∇2 − h̄∆21 |2〉〈2|+ h̄ω̃â†±â± + h̄g21â
†
±e
∓ikz |1〉〈2|+ h.c., (3.1.3)

where g21 = d12E/2h̄ is the light-atom coupling force.
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Since there is no dipole element between the same levels (pjj = 0), from (2.2.4)
the electric dipole moment for the 2LA reads〈

d̂
〉

= −e(ρ12p̂21 + ρ21p̂12), (3.1.4)

= d12(ρ12 + ρ21)ê, (3.1.5)

where we have introduced the electric dipole moment d12 ê = −ep12 = −ep21, given by

d12 =
√

3πε0h̄Γ12

k3 , (3.1.6)

and Ω21 the real Rabi frequency for this two-level system, defined as in equation (2.3.3)

h̄Ω21 =
〈
d̂ · Ê

〉
, (3.1.7)

Ω21 = d12E
h̄

(α+e
ikz + α−e

−ikz). (3.1.8)

With those definitions, and after some algebra, we obtain the Bloch equations for
the 2LA from the general expression in (2.4.6), which are given by the following set of
ordinary differential equations

dρ11

dt = 2γ2ρ22 + i

2(Ω∗21ρ21e
iω̃t − Ω21ρ12e

−iω̃t), (3.1.9a)
dρ22

dt = −2γ2ρ22 −
i

2(Ω∗21ρ21e
iω̃t − Ω21ρ12e

−iω̃t), (3.1.9b)
dρ12

dt = −(γ12 − iω21)ρ12 −
i

2Ω∗21e
iω̃t(ρ11 − ρ22), (3.1.9c)

dρ21

dt = −(γ21 + iω21)ρ21 + i

2Ω21e
−iω̃t(ρ11 − ρ22). (3.1.9d)

Remark that it is necessary to add the term γ21ρ22 to the derivative of the first
level population to satisfy the constraint of fixed total population:

ρ11 + ρ22 = 1.

3.2 Matrix representation

Let us now rewrite the Bloch equations into the frame of the driving field, by
introducing the following variables, which correspond to the |1〉-|2〉 transition coherence:

ρ21 = σ21e
−iω̃t. (3.2.1)

Then equation (3.1.9d) becomes

d
dt
(
σ21e

−iω̃t
)

= −(γ21 + iω21)σ21e
−iω̃t + i

2Ω21e
−iω̃t(ρ11 − ρ22), (3.2.2)

dσ21

dt = −(γ21 − i∆21)σ21 + i

2Ω21(ρ11 − ρ22), (3.2.3)
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where ∆21 = ω̃ − ω21 is the detuning between atomic resonance and the field frequency.
Therefore we can write the Bloch equations system (3.2.4) in a matrix equation form

d
dt


ρ11

ρ22

σ12

σ21

 =


0 Γ21 − i

2Ω21
i
2Ω∗21

0 −Γ21
i
2Ω21 − i

2Ω∗21

− i
2Ω∗21

i
2Ω∗21 −Λ21 0

i
2Ω21 − i

2Ω21 0 −Λ∗21




ρ11

ρ22

σ12

σ21

, (3.2.4)

where Λ21 = γ21 + i∆21 and Γ21 = 2γ21.

ω̃

∆21

Ω21
Γ21

|2〉

|1〉

Figure 6 – Two-level energy diagram for an atom excited by a laser field Ω21, where ∆21
is the detuning between the optical field frequency ω̃ and the atomic levels
transition, and Γ21 is the decay rate for the spontaneous emission of the excited
level.

Source: By the author.

3.3 Reduced Bloch equations

For the two-level atom case, we can reduce the equations in (3.2.4) to a two-equation
system by defining the populations difference D = 1

2(ρ11 − ρ22), whose derivative is given
by

dD
dt = 1

2

(
dρ11

dt −
dρ22

dt

)
, (3.3.1)

= γ12ρ22 + i

2(Ω∗21σ21 − Ω21σ12), (3.3.2)

= Γ21

(1
2 −D

)
+ i

2(Ω∗21σ21 − Ω21σ12). (3.3.3)

Hence the Bloch equations for the 2LA can be simplified to the following coupled
differential equations system

dσ12

dt = −Λ21σ12 − iΩ∗21D, (3.3.4a)
dD
dt = Γ21

(
1
2 −D

)
+ Im{σ12Ω21}. (3.3.4b)

We present the populations dynamics for the 2LA for different values of detuning in
Fig. 7. At resonance (∆21 = 0), the atom periodically performs a full population inversion,
which is reduced for a finite detuning.
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Figure 7 – Rabi oscillations for the populations difference (ρ11−ρ22)/2 of a two-level atom
with different values for the detuning where λ =

√
Ω2 + ∆2.

Source: By the author.

3.4 Stationary case

Due to the spontaneous emission, the system reaches a steady-state which is
described by the solution of equations (3.3.4), where the left-hand terms are set to zero.
The stationary solutions for the coherence and the population difference are given by

σ12(∞) = −iΩ
∗
21D

Λ21
, (3.4.1)

D(∞) = 1
2 + Im{σ12Ω21}

Γ21
. (3.4.2)

After some algebra we get

σ12(∞) = −iΩ21
Λ∗21

|Ω21|2 + 2|Λ21|2
, (3.4.3)

D(∞) = 1
4

Γ2
21 + 4∆2

21

|Ω21|2 + 2|Λ21|2
. (3.4.4)

In Fig. 8, one can observe the influence of the decay rate influence on the stationary state
of the atomic level.
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Figure 8 – Rabi oscillations of a two-level atom with spontaneous emission in the resonance
regime (∆21 = 0). For increasing decay rate the population difference reaches a
stationary value faster.

Source: By the author.

3.5 Optical fields

To account for the light fields dynamics in the ring cavity due to the feedback of the
atomic dipoles on the light fields, we need to derive the dynamics of the photon annihilation
and destruction operators through the Heisenberg equation. So far we neglected the position
operator ẑ present in the fields as the kick-operator eikẑ, however it has a huge importance
on the atomic external degrees of freedom dynamics. The light fields interacts with the
atoms by driving transitions within its levels, and they exchange a momentum quantity of
h̄k during the scattering.

However, for strong light intensities we may replace the quantum operators by
complex numbers ẑ ≡ z, which is valid since the light field photon number is much greater
than unity. From the system Hamiltonian (3.1.3), we can derive the derivatives of the field
complex amplitudes through the Heisenberg equation

dâ±
dt = i

h̄
[H, â±], (3.5.1)

= −igσ̂12e
∓ikẑ. (3.5.2)

Let us now include the losses and the pump of the fields. We first consider the
cavity decay κ that stems from the finite reflectivity of the mirrors

∂â±
∂t

∣∣∣∣∣
decay

= −κâ±. (3.5.3)
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We also consider the field detuning from the cavity resonance frequency ωc and the pumping
rate η, which is related to the injection of photons in the cavity:

∂â±
∂t

∣∣∣∣∣
det

= iωcâ,
∂â±
∂t

∣∣∣∣∣
pump

= η±. (3.5.4)

Adding all those rates to equation (3.5.2) we get the time derivative for the field complex
amplitudes operators:

dâ±
dt = −igσ̂12e

∓ikẑ + (i∆c − κ)â± + η±, (3.5.5)

where ∆c = ω̃ − ωc is the light fields detuning from the cavity resonance. We consider a
field with a large photon number, such that we can perform a semi-classical approximation
〈â±〉 = α± and 〈ẑ〉 = z. Generalizing for N non-interacting atoms, we get a complex
number derivatives

α̇± = χα± − ig
N∑
j

σj12e
∓ikzj + η±, (3.5.6)

where χ = (i∆c − κ), while zj and σj12 refer to the position and coherence of atom j.

Through these equations, the dynamics of the light field is related to the atomic
levels coherences dynamics, which in turn depends on the light fields.

3.6 Optical forces

Let us now define the optical forces acting on each atom due to its interaction with
the surrounding electric field:

Fj =
〈

dp̂j
dt

〉
, (3.6.1)

dp̂
dt = − i

h̄
[p̂,H], (3.6.2)

where we have considered only the direction of propagation ẑ. From the commutators
relations between p̂z and ẑ it is easy to show that

Fz = i

2 h̄k(σ12Θ− σ21Θ∗), (3.6.3)

= −h̄k Im{σ12Θ}, (3.6.4)

where we have defined
Θ = 2g21(α+e

ikz − α−e−ikz). (3.6.5)

For a static atom, ż = 0, we can substitute the stationary solution (3.4.1) for σ12 to
equation (3.6.4), to obtain

Fz = h̄kD
|Λ21|2

(
∆21 Im{Ω∗21Θ}+ Γ21

2 Re{Ω∗21Θ}
)
, (3.6.6)
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where

Ω∗21Θ = 4d2
12E2

h̄2

(
|α+|2 − |α−|2 + α+α

∗
−e

2ikz − α∗+α−e−2ikz
)
, (3.6.7)

= g2
21

(
|α+|2 − |α−|2 + 2i Im

{
α+α

∗
−e

2ikz
})
. (3.6.8)

We can identify in equation (3.6.8) the dipolar and radiation pressure forces,
considering their different behavior as functions of the detuning and decay rate. Using the
definition of the stationary population difference (3.4.4), we get

Frad = g2
21h̄k

Γ21

2
|α+|2 − |α−|2

|Ω21|2 + 2|Λ21|2
, (3.6.9)

Fdip = g2
21h̄k∆21

α+α
∗
−e

2ikz − α∗+α−e−2ikz

|Ω21|2 + 2|Λ21|2
, (3.6.10)

with the total force being given by Fz = Frad + Fdip.

Figure 9 – Typical behaviour for the dipolar and radiative pressure forces in the two-level
atom system as function of the detuning ∆12 for a decay rate |Ω21| = Γ21/2 =
106Hz, atomic position kz = π/4 and |α+| = 2|α−| = 100 .

Source: By the author.

In Fig. 9 we can see that the dipolar force decays slower than the radiative pressure
force at high values of ∆21/Γ21. While the radiative pressure does not depend on the
detuning sign, the dipolar force varies from repulsive to attractive as ∆21 changes sign
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and depending on the atom position. This dependence actually leads to the grating of the
atomic density. Thus the CARL phenomenon can only occur when a copropaganting field
is formed in the cavity, since the dipolar force relies on a spatial modulation of the electric
field.
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4 THREE-LEVEL ATOM

The case we now consider is that of a three-level atom interacting with the light
fields. This situation is significantly more complex than the previous one. There are three
different configurations for the three atomic levels, which are denominated Lambda (Λ), V
and Cascade (or Ladder Ξ):

Λ Ξ

V

|1〉

|3〉

|2〉

|1〉

|2〉

|3〉

|2〉

|1〉

|3〉

Figure 10 – Typical level configurations of a three-level atom, where each arrow represents
a permitted level transition.

Source: By the author.

4.1 Bloch equations for three-level system

In this chapter, we consider a system composed of a 3LA in a cascade configuration,
coupled to two light fields denominated E21 and E32, which drives the transitions of levels
|1〉 − |2〉 and |2〉 − |3〉, respectively:

~E21 = Re
{
E21
[
a+e

ikz + a−e
−ikz

]
e−iω̃t

}
ê, (4.1.1a)

~E32 = Re
{
E32a3e

−i(k3z+ω̃3t)
}

ê, (4.1.1b)

where E21 = i(h̄ω̃/2ε0V )1/2, E32 = i(h̄ω̃3/2ε0V )1/2. a± and a3 are the annihilation operators,
k and k3 are the wave-vectors, ω̃ and ω̃3 are the mode frequencies of fields ~E21 and ~E32

respectively.

The total Hamiltonian in the RWA for this system becomes

H = − h̄2

2mo

∇2 − h̄∆21σ̂21σ̂12 − h̄∆32σ̂32σ̂32 +
∑
k=±,3

h̄ω̃â†kâk

+ h̄g21â
†
±e
±ikzσ̂12 + h̄g32â

†
3e
ikzσ̂32 + h.c., (4.1.2)

where g21 = d12E21/2h̄ and g32 = d23E32/2h̄.
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∆21

∆32

Γ31

Γ32

Γ21

|1〉

|2〉

|3〉

Ω32

Ω21

Figure 11 – Schematic representation of the atomic level system with the transitions (blue
and green arrows) excited by the light fields (Ω21 and Ω32) and the spontaneous
decay transitions (red arrows) with respective decay rates (Γ).

Source: By the author.

The dipole moment (2.2.4) for the three-level atom reads:

~d = −e(~p12ρ21 + ~p13ρ31 + ~p21ρ12 + ~p23ρ32 + ~p31ρ13 + ~p32ρ23), (4.1.3)

= [d12(ρ21 + ρ12) + d13(ρ31 + ρ13) + d23(ρ32 + ρ23)]ê, (4.1.4)

where we consider the electric dipole moments ~dij = −e ~pij in the same direction ê of the
fields. In the cascade system we also have to consider that the transition between levels |1〉
and |3〉 is prohibited, so we can neglect d13 in our calculations. Thus the dipole moment
simplifies into

d = d12(ρ21 + ρ12)ê + d23(ρ32 + ρ23)ê. (4.1.5)

Inserting the above equation in (2.4.6) and applying the ansatz of the rotating
frame (3.2.1), we obtain the following equations for the diagonal density matrix elements:

dρ11

dt = Γ21ρ22 + i

2(Ω∗21σ21 − Ω21σ12), (4.1.6a)
dρ22

dt = −Γ21ρ22 + Γ32ρ33 −
i

2(Ω∗21σ21 − Ω21σ12) + i

2(Ω32σ32 − Ω∗32σ23), (4.1.6b)
dρ33

dt = −Γ32ρ33 −
i

2(Ω32σ32 − Ω∗32σ23). (4.1.6c)

Then, using (3.2.1) we can derive the other density matrix elements

dσ12

dt = − i
2Ω∗21(ρ11 − ρ22)− Λ21σ12 − i

2Ω32σ13, (4.1.6d)
dσ13

dt = − i
2Ω∗32σ12 − Λ31σ13 + i

2Ω∗21σ23, (4.1.6e)
dσ23

dt = − i
2Ω∗32(ρ22 − ρ33) + i

2Ω21σ13 − Λ32σ23, (4.1.6f)

where we define the generalized Rabi frequencies for the fields as:

Ω21 = d12E21

h̄
, (4.1.7)

Ω32 = d23E32

h̄
. (4.1.8)
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For the cascade configuration, we define Λ21 = 1
2Γ21+i∆21, Λ32 = 1

2(Γ21 + Γ31 + Γ32)+i∆32

and Λ31 = 1
2(Γ31 + Γ32)+ i(∆21 + ∆32), with ∆ij = ω̃−ωij the frequency detuning between

the |ψi〉-|ψj〉 transitions and the respective exciting field.

We can represent the above equations system in a matrix form

~̇ρ = L · ~ρ, (4.1.9)

where we introduce the following vector with the density matrix elements

~ρ =
(
ρ11 ρ22 ρ33 σ12 σ21 σ13 σ31 σ23 σ32

)T
, (4.1.10)

L =



0 Γ21 Γ31 − i
2Ω21

i
2Ω∗21 0 0 0 0

0 −Γ21 Γ32
i
2Ω21 − i

2Ω∗21 0 0 − i
2Ω32

i
2Ω∗32

0 0 −Γ32 − Γ31 0 0 0 0 i
2Ω32 − i

2Ω∗32

− i
2Ω∗21

i
2Ω∗21 0 −Λ21 0 − i

2Ω32 0 0 0
i
2Ω21 − i

2Ω21 0 0 −Λ∗21 0 i
2Ω∗32 0 0

0 0 0 − i
2Ω∗32 0 −Λ31 0 i

2Ω∗21 0
0 0 0 0 i

2Ω32 0 −Λ∗31 0 − i
2Ω21

0 − i
2Ω∗32

i
2Ω∗32 0 0 i

2Ω21 0 −Λ32 0
0 i

2Ω32 − i
2Ω32 0 0 0 − i

2Ω∗21 0 −Λ∗32



.

(4.1.11)

4.2 Stationary case

Focusing on the off-diagonal terms of the density matrix (i.e. the coherences), we
can write the following linear system

˙σ12

˙σ13

˙σ23

 =


−Λ21 − i

2Ω32 0
− i

2Ω∗32 −Λ31
i
2Ω∗21

0 i
2Ω21 −Λ32



σ12

σ13

σ23

+


− i

2Ω∗21(ρ11 − ρ22)
0

− i
2Ω∗32(ρ22 − ρ33)

. (4.2.1)

This allows us to obtain the stationary solution for the coherences as functions of the
populations, by setting the left-hand term to zero, and using the condition ρ11+ρ22+ρ33 = 1.

We then obtain the following expressions

σ12 = iΩ21

2

[
ρ22(2Ξ3 − |Ω32|2) + ρ33(Ξ3 + |Ω32|2)− Ξ3

]
Λ32|Ω32|2 + Λ21|Ω21|2 + 4Λ21Λ31Λ32

, (4.2.2a)

σ13 = Ω21Ω32
[ρ22(2Λ32 + Λ21) + ρ33(Λ32 − Λ21)− Λ32]

Λ32|Ω32|2 + Λ21|Ω21|2 + 4Λ21Λ31Λ32
, (4.2.2b)

σ23 = iΩ32

2

[
ρ22(2|Ω21|2 − Ξ2) + ρ33(Ξ2 + |Ω21|2)− |Ω21|2

]
Λ32|Ω32|2 + Λ21|Ω21|2 + 4Λ21Λ31Λ32

, (4.2.2c)
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where we have defined

Ξ2 = |Ω32|2 + 4Λ21Λ31,

Ξ3 = |Ω21|2 + 4Λ32Λ31.

4.3 Optical Fields

Analogous to section 3.5 we derive the equations for the cavity light fields dynamics
from the Hamiltonian in the RWA. Focusing on the time evolution of the cavity modes α±,
their derivatives, in presence of losses (cavity decay rate κ) and pump (η±), are given by

α̇± = ig21
〈
σ12e

−ikzj

〉
+ (i∆c − κ)α± + η+, (4.3.1)

where we obtain the same expression as in equation (3.5) since each exciting field does not
couple with the coherence of other transitions.

Throughout this project, we consider the light field mode α3 constant and neglect
any variation during the system dynamics.

4.4 Optical Forces

As in section 3.6, we can derive the optical forces on each atom from the Hamiltonian
(4.1.2). With the definition of Θ in (3.6.5) we can write the optical force for the 3LA as

Fzj
= i

2 h̄k(σ12Θ− σ21Θ∗) + i
2 h̄k3(σ23Ω32 − σ32Ω∗32), (4.4.1)

Fzj
= −h̄k Im{σ12Θ} − h̄k3 Im{σ23Ω32}. (4.4.2)

In the case of a 3LA the steady-state expressions for σ21 and σ32 are very complex, so we
do not write them explicitly.
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5 ELECTROMAGNETIC INDUCED TRANSPARENCY - EIT

In this chapter, we focus on the optical properties of atomic clouds and discuss
how they can be tuned taking advantage of the third level of the atoms.21–23

By inducing atomic coherences with a laser, we can cause quantum interference
between the different pathways in the energy level structure, which affects the material
optical response. This way, it is actually even possible to reduce or even eliminate the
absorption of a transition. This phenomenon, called electromagnetic induced transparency
(EIT), was demonstrated for the first time in a strontium gas24 where, by applying a strong
coupling field between a metastable state and the upper state of a permitted transition, it
was possible to obtain induced transparency in the material.

The main objective of studying this effect in our system is the intrinsic relation
between the optical forces exerted by the light fields on the atoms and its transition
coherences as in equations (4.4.2). Our objective is to understand if the manipulation of
the atomic coherences could lead to a reduction in the radiative pressure force exerted on
the atoms.

5.1 Static description of EIT

To observe the EIT phenomenon, one needs at least two different transitions, as in
a three-level system analysed in chapter 4. By making the distinction between the similar
phenomenon of AT (Autler-Townes splitting),25 we can only select between a Lambda and
Cascade configuration to study the EIT. In this work we choose the Cascade.

Let us consider the trapped atomic cloud inside the ring cavity, interacting with

∆21

∆32

Γ31

Γ32

Γ21

|1〉

|2〉

|3〉

Ω32

Ω21

Figure 12 – Schematic representation of the Cascade three-level level system with the
transitions (blue and green arrows) excited by the light fields Ω21 and Ω32, and
the spontaneous decay transitions (red arrows) with respective decay rates
Γ21,Γ32,Γ31, where the last one can be neglected in our system.

Source: By the author.
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two light field (E21 and E32), as described in equation (4.1.1). The interaction Hamiltonian
for this system can be written in the RWA as

Hint = h̄

2


0 Ω∗21 0

Ω21 2∆21 Ω∗32

0 Ω32 2(∆21 + ∆23)

, (5.1.1)

whose parameters were defined in chapter 4.

Although diagonalizing the Hamiltonian in the general case leads to complex
expressions, in the resonant case ∆21 +∆23 = 0 it is straightforward to obtain the following
eigenvalues

h̄ω0 = 0, (5.1.2)

h̄ω+ = ∆21 +
√

∆2
21 + |Ω21|2 + |Ω32|2, (5.1.3)

h̄ω− = ∆21 −
√

∆2
21 + |Ω21|2 + |Ω32|2, (5.1.4)

which are associated to the following eigenstates:

|0〉 = Ω∗23
Ω |1〉 − Ω12

Ω |3〉 , (5.1.5)

|+〉 = Ω∗12
Ω sin θ |1〉+ cos θ |2〉+ Ω23

Ω sin θ |3〉 , (5.1.6)

|−〉 = Ω∗12
Ω cos θ |1〉 − sin θ |2〉+ Ω23

Ω cos θ |1〉 , (5.1.7)

where we have introduced θ such as

sin 2θ =

√
|Ω21|2 + |Ω32|2√

∆2
21 + |Ω21|2 + |Ω32|2

, (5.1.8)

cos 2θ = ∆12√
∆2

21 + |Ω21|2 + |Ω32|2
. (5.1.9)

State |0〉 is called a dark state since it does not interact with the light fields, i.e., it is not
coupled to the atomic eigenstate |2〉. This provides a basic understanding of the EIT: the
driven field sends the atom to a dark state, where an interaction with the probe light is
no longer possible. As a result, it behaves as a transparent medium.

However, this description is oversimplified since it disregards the influence of
spontaneous emission, whose treatment requires a density matrix formalism as derived in
chapter 4.

5.2 EIT in presence of spontaneous emission

The steady state solutions for the 3LA coherences (density matrix off-diagonal
elements) were obtained in section 4.2. In this chapter we focus only on the coherence
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σ12 of the |1〉 → |2〉 transition. Although its expression is cumbersome, we can simplify
equation (4.2.2a) by considering that the transition |2〉-|3〉 is driven at resonance (∆32 = 0),
and by neglecting the excited populations (ρ22 ≈ ρ33 ≈ 0):

σ12 = −iΩ21
Ξ3

(Γ23 + Γ21)|Ω32|2 + (Γ21 + 2i∆21)Ξ3
,

σ12 = −iΩ21
|Ω32|2

|Ω21|2
(Γ23+Γ21) +2Λ21

+ 2Λ21
, (5.2.1)

where Ξ3 = |Ω21|2 +(Γ23 +Γ21)(Γ21 +2i∆21). Finally, since we considered that the transition
between levels |1〉 and |3〉 is prohibited, this allow us to neglect its decay rate, Γ31 = 0.
Comparing to the case where Ω32 = 0, we can expect new resonant peaks in both real and
imaginary parts of σ12, as can be observed in Fig. 13: it depicts the real and imaginary
part of σ12 as a function of the detuning for transition |1〉-|2〉, for different ratios between
the Rabi frequencies, Ω32/Ω21.
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Figure 13 – Real and imaginary parts of the 3LA coherence σ12 as a function of the
detuning of the transition |1〉 → |2〉 for different pumping strengths Ω32 of
transition |2〉 → |3〉. Parameters for the figure are Γ32 = 0.1Γ21 and Ω21 = Γ21.

Source: By the author.

As expected, the curves for Ω32 = 0 in Fig. 13 are the same as those of the dipolar
and radiative pressure forces in 3.6, since we recover the two-level atom case. The behavior
of the coherence near resonance is what instigates us to analyse the EIT phenomenon,
since at high ratios of Ω32/Ω21 the imaginary part of σ12 (related to the radiative pressure
force), reaches lower values than the real part (related to the dipolar force). However, these
new peaks only occur when the decay rate Γ32 is smaller than Γ21, and the resonances for
σ21 only get broader, see Fig. 14, since the third level decays rapidly after being excited
from the second level, and the system behaves as a two-level atom.
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Figure 14 – Real and imaginary parts of the 3LA coherence σ12 as a function of the
detuning of the transition |1〉 → |2〉 for different pumping strengths Ω32 of
transition |2〉 → |3〉. Parameters for the figure are Γ32 = 10Γ21 and Ω21 = Γ21.

Source: By the author.

Since the assumption of negligible excited populations is not valid for the near-
resonance regime (Ω2

21/(Γ2
21 + 4∆2

21) not negligible ), we analyse the system using the
full optical Bloch equations (4.2.2) for the steady state. In Fig. 15 we reproduce the new
resonant peaks and gaps in the coherence as in Fig. 13 at higher values of Ω21, throughout
a larger region of ∆21.
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Figure 15 – Real and imaginary parts of the coherence σ12 as a function of the detuning
for the complete steady state Bloch equations and excited levels populations.
Parameters for the figure are Γ32 = Γ21 and Ω21 = 10Γ21. In the right picture,
for Ω32/Ω12 = 0, ρ33 = 0 (i.e., the dash-dotted blue curve overlaps with the
x-axis)

Source: By the author.

For a decay rate Γ32 lower than Γ21 the imaginary part of σ12 reaches values closer
to zero, see figure 16. This effect is not captured by equation (5.2.1), which neglects the
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excited populations.

Figure 16 – Real and imaginary parts of the coherence σ12 as a function of the detuning
for the complete steady state Bloch equations and excited levels populations.
Parameters for the figure are Γ32 = 0.1Γ21 and Ω21 = 10Γ21.

Source: By the author.

The most interesting characteristic of the depicted curves is that for a large ratio
between the light field strengths, the real part of σ12 decays slower than the imaginary
part near the resonance, as it happens in the far-from-resonance regime for any value of
Ω32. This means that the dipolar force influence in the atomic dynamics can be stronger
than the radiative pressure force near resonance due to the EIT.

We also note that the excited populations are largely reduced near resonance, see
right graphic in Fig. 16 (i.e., at large detunings, the dipolar force dominates over the
radiation pressure one). Such behavior can be exploited in the context of the adiabatic
elimination, where the excited levels are eliminated from the dynamics when the light field
is far detuned. Our results suggest that this effect can be achieved close to resonance using
the EIT scheme.

5.3 Radiative pressure force reduction

From the above results we can infer that in the EIT regime the imaginary part of
σ12 is reduced in relation to its real part. Since from equation (3.6.4) we can associate
the imaginary and real part of the coherence with the radiative pressure and dipolar
force, respectively, therefore we can expect a large ratio between these forces near the
resonance of transition |1〉-|2〉. However, it is only possible to obtain values of the ratio
|Reσ12/ Im σ12| greater than the usual ratio (i.e., in absence of third level: Ω32 = 0), when
the decay rate Γ32 is lower than Γ21. In Fig. 17 we can note that for Γ32/Γ21 = 10, the
ratio resembles a parabola, which is due to the absence of the resonant peaks in this case,
as in Fig. 14.
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Figure 17 – Ratio between real and imaginary parts of the transition |1〉-|2〉 coherence,
varying the values of the decay rate for the transition |2〉-|3〉. Here we have
used Ω32 = 5Ω21 and Ω21 = 5Γ21. The black dashed line is the solution for
Ω23 = 0.

Source: By the author.

Using equation (4.4.2) we can analyse the influence of EIT on the optical forces,
analogously to the analysis made for the coherence in the previous section. By considering
different atomic positions and different values for the counterpropagating cavity modes
as in expression (3.6.8), it is possible to calculate separately the dipolar and radiative
pressure forces.
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Figure 18 – New resonant peaks in the optical forces steady state solutions, as functions of
the transition |1〉-|2〉 detuning for different transition |2〉-|3〉 Rabi frequencies.
Parameters for the figure are Γ32 = 0.1Γ21 and Ω12 = 10Γ21.

Source: By the author.
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Figure 19 – Optical forces in h̄k as function of transition |1〉-|2〉 detuning and pump
strength of transition |2〉-|3〉. Parameters for the figures are Γ32 = 0.5Γ21 and
Ω12 = 10Γ21.

Source: By the author.

In Fig. 18 we present the new resonant peaks for each optical force obtained by
the steady state solution of σ12. Near resonance, we obtain a dipole force larger than the
radiative pressure for large value of Ω32/Ω21, along with an inversion of sign related to the
detuning ∆21, which means that the forces becomes repulsive in a region where it would
be attractive without the EIT. Increasing the value o Ω32 we can see that those peaks
grow apart for both forces, see Fig. 19, where we calculate each force as a function of both
∆21 and Ω32.

We determine the regions where the radiative pressure force is reduced enough so
its dissipative effect on the atoms is lower than the dynamical effect of the dipolar force,
by monitoring the ratio between those force |Fdip/Frad|. In Fig. 20 we can note that large
values of this ratio are available near-resonance in the EIT regime, while such values would
occur only at far resonance regions without the pumping of transition |2〉-|3〉 (yet far from
resonance, the forces are much weaker). In Fig. 21 we show the forces ratio for a weaker
light-atom coupling Ω21 of transition |1〉-|2〉, which requires a lower decay rate and higher
pump strength of transition |2〉-|3〉 to suppress the radiative pressure force.
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Figure 20 – Ratio between dipolar and radiative force as function of transition |1〉-|2〉
detuning and pump strength of transition |2〉-|3〉. Parameters for the figure
are Γ32 = 0.1Γ21 and Ω12 = 10Γ21.

Source: By the author.

Figure 21 – Ratio between dipolar and radiative force as function of transition |1〉-|2〉
detuning and pump strength of transition |2〉-|3〉. Parameters for the figure
are Γ32 = 0.01Γ21 and Ω12 = 1Γ21.

Source: By the author.
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6 MATTER-WAVES AND REPRESENTATION IN MOMENTUM SPACE

In the previous chapters we have showed that the EIT effect depends only on the
internal atom dynamics, which so far has allowed us to analyse the system equations using
only its internal degrees of freedom. However, it is now necessary to consider extended
atoms to observe the Bloch oscillations, where the exchange of momentum between atoms
and light fields occur at integers values of photon momentum.

In this chapter we introduce this formalism using the quantization of the momentum
operator, considering an atomic matter wave, and derive the optical Bloch equations for
the two- and three-level atom systems, including the optical lattice and external force as
required to observe the Bloch oscillations.

6.1 Quantum momentum operator

The Hamiltonian of the atomic matter wave interacting with two different light
fields, within the dipole approximation and RWA, consists of the following contributions

Hatom = p̂2

2mo

− h̄∆21σ̂21σ̂12 − h̄∆32σ̂32σ̂23, (6.1.1a)

Hint = h̄g21
(
â†+e

−ikẑ + â†−e
ikẑ
)
σ̂12 + h̄g32â

†
3e
−ik3ẑσ̂23 + h.c., (6.1.1b)

Hfield = −h̄∆câ
†
qâq, (6.1.1c)

where gij = dijEij/2h̄ is the light-atom coupling strength, also called the single-photon
Rabi frequency.

If the atomic sample is much larger than the radiation wavelength, and its density
is uniform, the atomic wave function Ψ(r̂, t) can be expanded into plane waves in the
cavity axis ẑ, with periodicity of kz

Ψ(r̂, t) =
∑
n

∑
j

cj,nψj(r̂)einkz, (6.1.2)

where ψj are the unperturbed Hamiltonian eigenstates, and |cj,n|2 the probability of finding
the atoms in the n-th momentum state and j-th atomic state (j = 1, 2, 3 for a three-level
system).

The momentum quantization along the z-axis is realized by the definition of the
momentum operator p̂, whose expectation value only assumes integer multiples of h̄k:

p̂z =
∑
n

nh̄k |n〉〈n| , (6.1.3)
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where 〈r|n〉 = einkz is the momentum eigenstate. From the momentum and position
commutator [ẑ, p̂] = ih̄, we can derive the momentum kick-operator as

eikẑ =
∑
n

|n+ 1〉〈n| , e−ikẑ =
∑
n

|n− 1〉〈n| . (6.1.4)

Using the Dirac notation we can rewrite the atomic wave function as

|Ψ(t)〉 =
∞∑

n=−∞

3∑
j

cj,n |j, n〉 , (6.1.5)

where |j, n〉 = |j〉 ⊗ |n〉 , and 〈r|j〉 = ψj(r̂) is the atomic Hamiltonian eigenstate. The
normalization condition of |Ψ〉 gives us the atoms number N in the matter wave as

〈Ψ(t)|Ψ(t)〉 = N. (6.1.6)

We can add the optical lattice contribution to the system through the term h̄Wo sin(2kz)/2,
which describes a stationary wave with periodicity of 2kz. This stationary wave can be
generated by two laser beams crossing the cavity at a determined angle, see Fig. 4.
Expanding the sine,

Hlatt = h̄Wo

2 sin(2kẑ) = −ih̄Wo

4
(
e2ikẑ − e−2ikẑ

)
, (6.1.7)

we can see that the optical lattice contribution to the system are the momentum kick
operators, which change the atoms momentum in integers values of ±2h̄k.

The gravity force acting on the atoms can be included in the atomic Hamiltonian
(6.1.1a) by potential V (r̂) = mogr̂, where r̂ is the atom position operator and g is the
gravity acceleration. To simplify the equations we consider the movement of the atom only
in the ẑ direction and describe the dynamics of the system in a accelerated frame moving
with momentum mogt in the positive direction of the z-axis. The atom wave-function in
this frame is transformed as

Ψ = Ψ̃eimogzt/h̄, (6.1.8)

which is given by the free-fall solution of Ψ in this potential. The Schrödinger equation for
the atomic wave-function then reads

ih̄
dΨ
dt = HatomΨ, (6.1.9)

ih̄
dΨ̃
dt e

imogzt/h̄ −mogzΨ = − h̄
2k2

2mo

∂2

∂z2

(
Ψ̃eimogzt/h̄

)
−mogzΨ, (6.1.10)

ih̄
dΨ̃
dt = − h̄

2k2

2mo

(
∂

∂z
+ imogt

h̄

)2

Ψ̃. (6.1.11)

Finally the atomic Hamiltonian in the accelerated frame can be written as

H̃atom = − h̄
2k2

2mo

(
p̂

h̄k
+ imogt

h̄

)2

. (6.1.12)
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6.2 Schrödinger equation for the two-level atoms

We can start analysing the system for the two-level atom case in the Schrödinger
equation picture by neglecting the spontaneous emission. The derivatives of the complex
amplitudes in eq. (6.1.2) turn into the following set of coupled differential equations

ċ1,n = −iωr(n+ 2νbt)2c1,n + ig21
(
α∗+c2,n+1 + α∗−c2,n−1

)
+ Wo

4 (c1,n+2 − c1,n−2), (6.2.1a)

ċ2,n = −iωr(n+ 2νbt)2c2,n − i∆21c2,n + ig21(α+c1,n−1 + α−c1,n+1) + Wo

4 (c2,n+2 − c2,n−2),
(6.2.1b)

where ωr = h̄k2/2mo is the single-photon recoil frequency and νb = mog/h̄k is the Bloch
oscillation frequency.

As for the light field modes, using the Heisenberg equation and adding decay rates
for the cavity κ and pump rates η±, we get

α̇± = (i∆c − κ)α± + ig21
∑
n

c∗1,n∓1c2,n + η±, (6.2.2)

where the atoms number can be recovered from the complex amplitudes from the nor-
malization condition (6.1.6). The atomic movement can be described by the momentum
operator expectation value:

p = h̄k
∑
n

n
(
|c1,n|2 + |c2,n|2

)
, (6.2.3)

whose derivative, corresponding to the dipolar force, is given by

ṗ = ih̄kg21
∑
n

(
[α∗+c∗1,n−1c2,n − α∗−c∗1,n+1c2,n]− c.c.

)
. (6.2.4)

We can see in Fig. 22 that the momentum modes populations for the atomic ground
states performs the Bloch oscillations due to the optical lattice and external force, and its
interaction with the cavity mode α+ carries information about the atoms motions. The
simulation was performed for a constant light field mode α− = η−/κ.

However, for low values of detuning for transition |1〉-|2〉 the excited level starts
to influence on the Bloch oscillations, see Fig. 23. The pulses from the light field mode
are damped due to the decoherence in the ground state population ∑n |c1n|2. Due to the
large number of momentum states involved, numerical solutions become very complex and
time-consuming when considering the case of a light field far detuned from the atomic
resonance (∆21 � g21), since one has to deal with many fast oscillations between the
atomic level states. To tackle this issue, we can perform an adiabatic elimination of the
excited state. When the light fields are very detuned from atomic resonances, the internal
and external dynamics occur at very different time scales, where the former varies faster
and adapt very rapidly to the boundary conditions defined by the external state and the
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Figure 22 – Time evolution of (top) the momentum modes populations of the atomic
ground state, where each color correspond to a momentum mode of even
n, and (bottom) the light field mode α+ intensity. Parameters used for the
simulation: g21 = 0.1ωr, α− = 1.25, ∆21 = 400ωr, ∆c = 0, κ = 160ωr and
νb = 0.035ωr with N = 4.104 atoms.

Source: By the author.

light field. Therefore, the internal state has no dynamics on the time-scale of the atom
motion, and we can adiabatically eliminate the internal degrees of freedom related to the
atomic energy levels. Then the coherence between levels transition σ21 and populations
difference D reaches the steady-states solutions as derived in section 3.4. Considering the
case without spontaneous emissions the solution for the coherence is given by

σ̂21(∞) = i

2
Ω21∆21

|Ω21|2 + 2∆2
21
≈ i

2
g21(â+e

ikẑ + â−e
−ikẑ)

∆21
, (6.2.5)

where the approximation is performed in the regime where ∆2
21 � |Ω21|2. Inserting the

above equation in equations (6.1.1), we obtain the Hamiltonian for the adiabatic elimination
of the excited state without pump

H = H̃atom −
ih̄g2

21
∆21

(
â†+e

−ik1ẑ + â†−e
ik1ẑ

)
(â+e

ikẑ + â−e
−ikẑ) + h̄∆câ

†
±â± + h̄Wo

2 sin(2kẑ),

(6.2.6)

H = H̃atom − ih̄Uo
(
â†+â−e

−2ik1ẑ + â†−â+e
2ik1ẑ

)
+ h̄(Uo−∆c)â†±â± + h̄Wo

2 sin(2kẑ),

(6.2.7)

where Uo = g2
21/∆21 is the pump-probe coupling strength.
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Figure 23 – Time evolution of (top) the momentum modes populations of the atomic
ground state, and (bottom) the light field mode α+ intensity. Parameters
used for the simulation are: g21 = 0.1ωr, α− = 0.125, ∆21 = 200ωr, ∆c = 0,
κ = 160ωr and νb = 0.035ωr with N = 4.104 atoms.

Source: By the author.

The Hamiltonian eigenstates (6.1.5) consists now only of the momentum states

|Ψ(t)〉 =
∑
n

cn |n〉 , (6.2.8)

and its complex amplitudes derivatives, considering the external force and optical lattice,
are given by

dcn
dt = iωr(n+ 2νbt)2cn + Uo(α̃∗cn+2 + α̃cn−2), (6.2.9)

where α̃ = α + αo with α =
〈
â†−â+

〉
and αo = Wo/4Uo. The light field mode derivative,

for a constant probe mode α̇− = 0 can be written as

dα̃
dt = Uo

∑
n

c∗ncn+2 + (i(Uo + ∆c)− κ)(α̃− αo), (6.2.10)

and the average atomic momentum in the accelerated frame is given by

〈p̂〉 =
∑
n

h̄kn|cn|2, (6.2.11)

where we can make the transformation 〈p̂〉lab = 〈p̂〉+ νbt to obtain the momentum in the
laboratory frame.

In Fig. 24 we show the system dynamics after the adiabatic elimination of the
excited level, where we consider the substitution of n → 2n in equations (6.2.9) and
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Figure 24 – Time evolution of (top) the momentum modes populations in the adiabatic
elimination regime, (middle) the average atomic momentum in the laboratory
reference frame with N = 2.104 atoms and (bottom) the light field mode
intensity. Parameters used for the simulation are: |αo| = 20, νb = 0.035ωr,
Uo = 0.04ωr, ∆c = 0 and κ = 160ωr.

Source: By the author.

(6.2.10), since the dynamics occurs only at even numbers of n. Neglecting the oscillations
between atomic level states allows us to observe more momentum modes oscillations with
a reduced integration time of the numerical routine.

In fact we are able to observe the CARL dynamics dominating the system for a large
atoms number in Fig. 25, and for a large cooperative coupling NUo/κ, which manifests as
pulses of backscattered photons in the mode α and the acceleration in the average atomic
momentum. This can be explained as a scattering of photons from the pumped cavity
mode into the reverse mode α, which influence the atoms dynamics. In this regime, the
momentum transfer from the fields to the atoms results in the backscattering of the pump
light by a self-generated atomic density grating. As a consequence, the population transfer
between adjacent momentum states does not occur at the regular Bloch periods νb.8,9

However, such behavior can not be reproduced by solving equations (6.2.1), since
it would require a large detuning to maintain the atoms in the ground state, which in turn
is very costly from a numerical standpoint.

6.3 Master equation for the three-level atoms

Let us now derive complete equations from the three-level system. We start by
defining the system density matrix regarding the internal and external atomic degrees
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Figure 25 – Time evolution of (top) the momentum modes populations, (middle) the
average atomic momentum in the laboratory reference frame with N = 12.104

atoms and (bottom) the light field mode intensity for the system dominated
by CARL dynamics. Parameters used for the simulation are similar to Fig. 24

Source: By the author.

of freedom. To simplify our equations we consider that both light fields have similar
wave-numbers k1 ≈ k3 ≈ k.

Within the rotating wave approximation we can write the density matrix for the
atomic system

ρ̂(t) = |Ψ(t)〉〈Ψ(t)| , (6.3.1)

ρm,nij = 〈i,m| ρ̂ |j, n〉 . (6.3.2)

The equations of motion for the density matrix element is given by the von Neumann
equation with the Hamiltonian (6.1.1) and the dissipative term of the Lindblad super-
operators:

dρ̂
dt = i

h̄
[ρ̂,H] + Latomρ̂+ Lcavityρ̂, (6.3.3)

which write

Latomρ̂ = −
∑
i,j

γij(σ̂jiσ̂ij ρ̂− 2σ̂ij ρ̂σ̂ji + ρ̂σ̂jiσ̂ij), (6.3.4)

Lcavρ̂ = −κ
(
â†±â±ρ̂− 2â±ρ̂â†± + ρ̂â†±â±

)
. (6.3.5)

Then, the derivative of each density matrix element is written as

ρ̇m,nij = i

h̄
〈i,m| [ρ̂,Hatom +Hint] |j, n〉+ 〈i,m| Latomρ̂ |j, n〉 . (6.3.6)
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Expanding the first term in the RHS of the above expression (denominated the coherent
part), we obtain

〈i,m| [ρ̂,Hat,int] |j, n〉 = 〈i,m| ρ̂
∑
v,q

|v, q〉〈v, q|Hat,int |j, n〉

− 〈i,m|Hat,int

∑
u,p

|u, p〉〈u, p| ρ̂ |j, n〉 , (6.3.7)

〈i,m| [ρ̂,Hat,int] |j, n〉 =
∑
v,q

ρm,qi,v 〈v, q|Hat,int |j, n〉 −
∑
u,p

〈i,m|Hat,int |u, p〉 ρp,nu,j , (6.3.8)

〈i,m| [Hat,int, ρ̂] |j, n〉 = h̄

[
(n2 −m2)h̄k2

2mo

−∆21(δj2 − δi2)−∆32(δj3 − δi3)
]
ρm,nij

− h̄g21
[
α∗+
(
δi1ρ

m+1,n
2j − δj2ρm,n−1

i1

)
+ α∗−

(
δi1ρ

m−1,n
2j − δj2ρm,n+1

i1

)]
− h̄g21

[
α+
(
δi2ρ

m−1,n
1j − δj1ρm,n+1

i2

)
+ α−

(
δi2ρ

m+1,n
1j − δj1ρm,n−1

i2

)]
− h̄g32α

∗
3

(
δi2ρ

m+1,n
3j − δj3ρm,n−1

i2

)
− h̄g32α3

(
δi3ρ

m−1,n
2j − δj2ρm,n+1

i3

)
. (6.3.9)

As for the incoherent part of equation (6.3.6), one gets

〈i,m| Latomρ̂ |j, n〉 = −
∑
k,l

〈i,m| γkl(σ̂lkσ̂klρ̂− 2σ̂klρ̂σ̂lk + ρ̂σ̂lkσ̂kl) |j, n〉 , (6.3.10)

〈i,m| Latomρ̂ |j, n〉 = −
∑
k,l

〈i,m| γklσ̂lkσ̂kl
∑
u,p

|u, p〉〈u, p| ρ̂ |j, n〉

+ 2
∑
k,l

γkl 〈i,m| σ̂kl
∑
u,p

|u, p〉〈u, p| ρ̂
∑
v,q

|v, q〉〈v, q| σ̂lk |j, n〉

−
∑
k,l

γkl 〈i,m| ρ̂
∑
u,p

|u, p〉〈u, p| σ̂lkσ̂kl |j, n〉 , (6.3.11)

〈i,m| Latomρ̂ |j, n〉 =
∑
k,l

∑
u,p,q,v

2γkl 〈i,m| σ̂kl |u, p〉 ρp,qu,v 〈v, q| σ̂lk |j, n〉

−
∑
k,l,u,p

γkl 〈i,m| σ̂lkσ̂kl |u, p〉 ρp,nu,j −
∑
k,l,u,p

γklρ
m,p
i,u 〈u, p| σ̂lkσ̂kl |j, n〉 , (6.3.12)

〈i,m| Latomρ̂ |j, n〉 =
∑
k,l

2δi,kδjkγklρm,nl,l −
∑
k

(γki + γkj)ρm,nij . (6.3.13)

Gathering all the equations we obtain from the following derivative for the density
matrix elements

ρ̇m,nij = i

[
h̄k2

2mo

(n2 −m2)−∆21(δj2 − δi2)−∆32(δj3 − δi3)
]
ρm,nij

− ig21
[
α∗+
(
δi1ρ

m+1,n
2j − δj2ρm,n−1

i1

)
+ α∗−

(
δi1ρ

m−1,n
2j − δj2ρm,n+1

i1

)]
− ig21

[
α+
(
δi2ρ

m−1,n
1j − δj1ρm,n+1

i2

)
+ α−

(
δi2ρ

m+1,n
1j − δj1ρm,n−1

i2

)]
− ig32α

∗
3

(
δi2ρ

m+1,n
3j − δj3ρm,n−1

i2

)
− ig32α3

(
δi3ρ

m−1,n
2j − δj2ρm,n+1

i3

)
+
∑
k,l

2δi,kδjkγklρm,nl,l −
∑
k

(γki + γkj)ρm,nij . (6.3.14)
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The derivatives for each element of the density matrix, after performing the
transformation into the driving fields frame 3.2.1, read

ρ̇m,n11 = iωmnr ρm,n11 + Γ12ρ
m,n
22 + Γ13ρ

m,n
33

− ig21
(
α∗+σ

m+1,n
21 + α∗−σ

m−1,n
21 − α+σ

m,n+1
12 − α−σm,n−1

12

)
,

(6.3.15a)

ρ̇m,n22 = iωmnr ρm,n22 − Γ12ρ
m,n
22 + Γ23ρ

m,n
33 − ig32

(
α∗3σ

m+1,n
32 − α3σ

m,n+1
23

)
+ ig21

(
α∗+σ

m,n−1
21 + α∗−σ

m,n+1
21 − α+σ

m−1,n
12 − α−σm+1,n

12

)
,

(6.3.15b)

ρ̇m,n33 = iωmnr ρm,n33 − (Γ23 + Γ13)ρm,n33 + ig32
(
α∗3σ

m,n−1
32 − α3σ

m−1,n
23

)
, (6.3.15c)

σ̇m,n21 = −
(

Γ12

2 − i∆
mn
21

)
σm,n21 + ig32α

∗
3σ

m+1,n
31

− ig21
[
α+
(
ρm−1,n

11 − ρm,n+1
22

)
+ α−

(
ρm+1,n

11 − ρm,n−1
22

)]
,

(6.3.15d)

σ̇m,n31 = −
(

Γ13

2 − i∆
mn
31

)
σm,n31 + ig32α3σ

m−1,n
21 − ig21

(
α∗+σ

m,n+1
32 + α∗−σ

m,n−1
32

)
, (6.3.15e)

σ̇m,n32 = −
(

Γ23

2 − i∆
mn
32

)
σm,n32 + ig21

(
α∗+σ

m,n−1
31 + α∗−σ

m,n+1
31

)
− ig32α3

(
ρm−1,n

22 − ρm,n+1
33

)
,

(6.3.15f)

where ρij = σije
iω̃, ∆mn

ij = ωij + ωmnr − ω̃, ωnmr = (n2 −m2) h̄k2

2mo
is the recoil frequency for

a momentum transition from n to m and Γij = 2γij the linewidth of the respective atomic
level transition. The phases eiω̃t are absorbed by the fields amplitudes α.

From the Heisenberg equation the fields equations of motion yields

α̇+ = (i∆c − κ)α+ − ig21
∑
n

σn−1,n
12 + η+, (6.3.16a)

α̇− = (i∆c − κ)α− − ig21
∑
n

σn+1,n
12 + η−. (6.3.16b)

The derivative for the density matrix element with the external force includes the term
−2ih̄k2

mo
(m − n)νbtρm,nij in 6.3.14, where νb = moa/2h̄k. In order to avoid repeating the

equations (6.3.15) we can include this term into the recoil frequency as

ωm,nr = h̄k2

2mo

[
(n2 −m2) + 4(n−m)νbt

]
. (6.3.17)

The corresponding terms in the density matrix elements derivatives from the optical lattice
are given by the Hamiltonian in equation (6.1.7)

i

h̄
[ρ̂,Hlatt] = −Wo

4
[(
e2ikz − e−2ikz

)
, ρ̂
]
, (6.3.18)

〈i,m|
[
e±2ikz, ρ̂

]
|j, n〉 = ρm∓2,n

ij − ρm,n±2
ij , (6.3.19)

which can be added to equations (6.3.14) as

−Wo

4
(
ρm−2,n
ij − ρm,n+2

ij − ρm+2,n
ij + ρm,n−2

ij

)
. (6.3.20)
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6.4 Results

In this section we present the obtained results for equations (6.3.15) in presence of
the gravity and optical lattice. At first, we reproduce the dynamics for the 2LA as shown
by Fig. 26, where the third level is “turned off” by setting g32 = 0.
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Figure 26 – (top) Bloch oscillations for a two-level atom by solving equations (6.3.15)
with g32 = 0, (middle) average atomic momentum in the laboratory reference
frame (in h̄k) with N = 4.104 atoms and (bottom) time evolution of the
light field mode intensity. Parameters used for the simulation are: α− = 102,
νb = 0.035ωr, Uo = 0.04ωr, ∆c = 0, κ = 160ωr, ∆21 = 50ωr and g21 = 0.1ωr.

Source: By the author.

The main interest of solving the master equation for this system is to include the
dissipation effect of the spontaneous emission. In Fig. 27 we can observe this effect on
the Bloch oscillations for a large detuning ∆21 = 2.103Γ21. The decoherence on the atoms
dynamics occurs as odd momentum modes of the ground state are populated (dashed
lines in the figures). Those momentum modes come from the excited state, which decays
according to the term Γ21ρ

m,n
22 in equation (6.3.15b).

For the dynamics, it is required to include positive momentum modes in the
numerical routine. A full spectrum of n would show that those momentum modes are
also populated throughout the system dynamic, but this effect is rather weak, as can
be summarized in the mode n = 2, see Fig. 27 and 28.26 The atoms in those modes are
eliminated from the cloud since they are accelerated towards gravity, and their influence
on the light fields are negligible for small decay rates.
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Figure 27 – Dissipation effect on the Bloch oscillations for a decay rate of Γ21 = .05ωr,
∆21 = 100ωr, g21 = 0.1ωr and α− = 102.

Source: By the author.

Although the odd momentum modes overcome the even modes, for higher decay
rates we can note that actually more atoms are expelled from the cloud as the even and
odd modes decrease, see Fig. 28. With fewer atoms performing the Bloch oscillations, the
oscillations signals on the light field mode α+ decays rapidly.

Turning on the third level we can observe momentum modes oscillations in each
level, see Fig. 29, which depicts a non-dissipative three-level system. The growth of the
excited levels momentum modes is a probable signature of the CARL phenomenon, which
increases the excited atoms momentum, accelerating their average momentum upwards
the gravity.

Adding the spontaneous emission to the three-level atom dynamics, in Fig. 31 we
can see the growth of the odd momentum modes of the ground state, while the excited
states reaches stationary values. Comparing to the two-level case in Fig. 30, there is a
substantial reduction on the odd modes. Regarding the results in Chapter 5, unfortunately
to reach the region of EIT it would require a much higher light-atom coupling force g32 for
the transition |2〉-|3〉 to efficiently eliminate the system dissipation.
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Figure 28 – Dissipation effect on the Bloch oscillations for a decay rate of Γ21 = 2.5ωr,
∆21 = 100ωr, g21 = 0.1ωr and α− = 102.

Source: By the author.
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Figure 29 – Bloch oscillations on the three atomic levels without dissipation. Parameters
for the figure are: ∆21 = 50, Γ21 = Γ32 = 0, g21 = 0.1ωr and g32 = 10ωr.

Source: By the author.
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Figure 30 – Bloch oscillations on two atomic levels with dissipation. Parameters for the
figure are: ∆21 = 50, Γ21 = 0.05ωr, Γ32 = 0, g21 = 0.1ωr and g32 = 0ωr.

Source: By the author.

Figure 31 – Bloch oscillations on three atomic levels with dissipation. Parameters for the
figure are: ∆21 = 50, Γ21 = 0.05ωr, Γ32 = 0, g21 = 0.1ωr and g32 = 10ωr.

Source: By the author.





65

7 CONCLUSIONS

In the previous chapter, we derived the equations of motion for the three-level
atoms system interacting with light fields driving the two transitions. The contributions
of an optical lattice and the gravity force were considered, in order to combine the
CARL phenomenon and the Bloch oscillations in the system, which required a plane wave
expansion of the atoms wave-function. With this, we considered entangled states that
combined the atomic momentum mode and its internal energy level. We also considered an
approximation assuming the same wave-numbers for the two transitions, so that we could
analyse the movement of the atoms in each level with the same plane wave expansion and
in the same direction. Other configurations lead to a more complex form for the equations
of motion, where a much larger momentum space would be accessible to the atoms.27

The set of coupled differential equations for the density matrix elements and for
the coupled dynamics of the light field modes allows us to perform numerical routines
to simulate the atoms momentum dynamics over several Bloch oscillations. As we do
not consider an adiabatic elimination of the excited levels, these equations involve more
variables than previous works.9 Thus, the obtained results are valid for small detuning
and light-atom coupling strength. Using the master equation formalism, we were able to
analyse the influence of spontaneous emission on the Bloch oscillations. We showed that
this dissipation phenomenon suppress the modes oscillations, while populating intermediate
modes that did not appear before in the ground state. Although one could expect that
those intermediate mode oscillations would remain throughout the dynamics, they saturate
and then decay. This decay is accompanied by the atoms stopping to interact with the
light, as the population of positive momentum modes (in the gravity reference frame)
increases throughout the dynamics.

A possible solution to this problem would be the EIT, whose influence on the
dissipative radiative pressure force was analysed in chapter 5. However, to reach the
region where this phenomenon is expected to occur, computational resources with higher
capacities are required. Here we have presented results showing that even for a region where
the radiative pressure is not efficiently suppressed, the dissipation of the momentum modes
oscillations is reduced. Those preliminary results motivate us to continue the investigation
of Bloch oscillations close to regions where the EIT influence on the system is substantial,
with the adoption of more advanced numerical methods. The EIT in the Λ three-level atom
configuration is also worth investigating, since our results show that the radiative pressure
force reduction relies on a condition between the decay rates of the levels transitions for a
cascade configuration, which limits the relevant atomic species.

An effect that can be better investigated is the dynamics considering a full spectrum
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of the momentum modes, as in recent works where two matter waves performing Bloch
oscillations were combined.26 This would allow the investigation of matter-wave performing
Bloch oscillations in a ring cavity, such that their interaction with the light field leads to
an interference, which can carry extra information of the atoms motion.

———————————————————-
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